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1 Introduction

As the field of biology progresses, there arises a need to apply specific culture conditions for the
growth and proliferation of target cell types. This is particularly important in stem cell differen-
tiation where external conditions ranging from gas concentration to the concentration of various
reagents in solution can determine the efficiency of a cell to progress towards a target lineage.[1]

Oxygen in particular is an important modulator of cellular function as it is a key element in
metabolic processes. The manipulation of the oxygen concentration would then allow us to in-
duce phenotypic changes of cells in culture.[2] For this project, we are analyzing the spatial oxygen
distribution inside a bioreactor in which fluid is flowed across a cell culture at a constant rate. Mod-
eling such a device provides an important step to control as it allows the visualization of oxygen
concentrations throughout the bioreactor without the need for a complex sensor array and gives
the ability to predict outcomes that could be correlated to apparent oxygen concentration for given
cells.

Figure 1: A parallel–plate flow bioreactor. Image source: [2]
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2 Bioreactor Model

Figure 1 from Allen, et al.[2] shows a bioreactor scheme that we will analyze. This particular
bioreactor is a parallel–plate type flow bioreactor. A fluid carries oxygen to the cell by flowing
through the chamber parallel to a monolayer of cells on the bottom of the chamber. This fluid
delivers the oxygen to the cell monolayer. Figure 2 shows a simplified schematic of the same
bioreactor. Note the fluid enters the chamber from the left side.
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Figure 2: A simplified schematic of a parallel–plate flow bioreactor.

2.1 Assumptions

We will make several assumptions before we state the problem in quantitative terms. Here we will
ignore edge effects and solve the problem in two dimensions. We assume gravity is negligible and
diffusion in the x-direction is insignificant compared to convection in the x-direction.

With regards to the fluid, we will use the average fluid speed instead of deriving a flow velocity
profile. We will assume that fluid flow is well–developed and is in steady–state at all times. In
addition, we assume the oxygen concentration in the fluid is constant at all times and that the
diffusivity of oxygen in the fluid is constant throughout the problem domain. The incoming fluid
is the chamber’s only source of oxygen; there is no oxygen generation within the chamber itself.

Finally, we assume that the cell monolayer consumes oxygen at a constant rate and that the top
of the bioreactor is impermeable to oxygen. The cell monolayer is the only thing in the bioreactor
that consumes oxygen. The right side of the chamber in Figure 2 is an open boundary.

3



2.2 Physics

We can now invoke the conservation of mass to obtain the governing equation of the system. The
conservation of mass is stated as follows:

d

dt

˚
R

c(r, t) dV︸ ︷︷ ︸
change of mass in V

=

‹
∂R

J(r, t) · n dS︸ ︷︷ ︸
mass flow into V

+

˚
R

Q(r, t) dV︸ ︷︷ ︸
mass generation in V

(1)

⇒ ∂c

∂t
(r, t) = ∇ · J(r, t) +Q(r, t) (2)

where c is the concentration and R represents a fixed volume (region). Equations 1 and 2 are
the integral and differential forms of the conservation of mass law, respectively. We will use the
differential form for our problem.

To solve for this problem in steady–state conditions, we set the time derivative to zero. Also,
we set Q = 0 since there is no oxygen generation in the chamber:

0 = ∇ · J(r, t) (3)

The expression for the flux J is:

J(x, y) = V c(x, y)̂ı−D
∂c

∂y
(x, y)̂ȷ (4)

where V is the average fluid velocity and D is the diffusivity of oxygen in the fluid. The flux takes
into account the flux due to convection and the flux due to diffusion. We use Fick’s law to describe
the diffusion flux here.

The ∇ operator in 2D Cartesian coordinates is:

∇ =
∂

∂x
ı̂+

∂

∂y
ȷ̂ (5)

This results in the following expression:

0 = ∇ · J(r, t) ⇒ V
∂c

∂x
= D

∂2c

∂y2
(6)

Which gives us the partial differential equation to be solve for:

V
∂c

∂x
= D

∂2c

∂y2
(7)

This equation must be subject to the following boundary conditions:

c(0, y) = c0, −D
∂c

∂y
(x, 0) = 0, −D

∂c

∂y
(x,H) = J (8)

Which follows from the previous set of assumptions. Namely, that the inlet fluid oxygen concen-
tration is constant (first boundary condition), that the top of the chamber is impermeable to oxygen
(second boundary condition), and that the cell monolayer consumes oxygen at a constant rate (third
boundary condition).
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3 Analytical Solution

To solve Equation 7 given the boundary conditions, we employ several mathematical techniques
to simplify the problem further.

3.1 Nondimensionalization

A particularly useful technique for physical problems involves rewriting Equation 7 into a dimen-
sionless form (and thus also making the boundary conditions dimensionless). This can be done by
performing the following change of variables:

ĉ =
c

c0
x̂ =

x

L
ŷ =

y

H

α =
L

H
Pe =

V H

D
Da =

JH

Dc0

Using the chain rule for derivatives, we can rewrite both the partial differential equation:

∂ĉ

∂x̂
=

α

Pe

∂2ĉ

∂ŷ2
(9)

And the boundary conditions:

ĉ(0, ŷ) = 1,
∂ĉ

∂ŷ
(x̂, 0) = 0,

∂ĉ

∂ŷ
(x̂, 1) = −Da (10)

Note that Pe and Da really are dimensionless!

Pe =
V H

D
⇒

(m
s
× m

)/(
m2

s

)
= 1

Da =
JH

Dc0
⇒

(
mol

m2 × s
× m

)/(
m2

s
× mol

m3

)
= 1

Also note that the process of nondimensionalization produces some dimensionless numbers,
such as the length–to–height ratio α and the dimensionless oxygen flux Da (the Damköhler num-
ber) The most important number for our case is the Péclet number, Pe. The number is defined
as:[3]

Pe =
convective transport rate
diffusive transport rate

(11)

Recall that we assumed that diffusion in the x-direction was insignificant compared to convection
in the same direction. The Péclet number described above allows us to quantify how well the
assumption holds in our problem. In other words, if Pe >> 1, then the assumption holds for all
intents and purposes.
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3.2 Homogenization

We will continue to simplify the problem; specifically we will rewrite the partial differential equa-
tion and the boundary conditions to make the boundary conditions as homogeneous as possible.
Through some trial–and–error, we come to using the following change of variables:

ĉ = θ̂ −Da

(
ŷ2

2
+

α

Pe
x̂

)
(12)

Which substituted into Equation 9 produces:

∂θ̂

∂x̂
=

α

Pe

∂2θ̂

∂ŷ2
(13)

We must also rewrite the boundary conditions to be consistent with the change of variables:

θ̂(0, ŷ) = 1 +
Da

2
ŷ2,

∂θ̂

∂ŷ
(x̂, 0) = 0,

∂θ̂

∂ŷ
(x̂, 1) = 0 (14)

Note that we have effectively made all but one boundary condition homogeneous. This will be
especially helpful for the next technique.

3.3 Separation of Variables

In the separation of variables technique, we assume the solution is of the form:

θ̂(x̂, ŷ) = X(x̂)Y (ŷ) (15)

With this assumption, we rewrite the partial differential equation yet again:

1

X

dX

dx̂
=

α

Pe

1

Y

d2Y

dŷ2
= −λ2 (16)

And the boundary conditions:

X(0)Y (ŷ) = 1 +
Da

2
ŷ2 (17)

X(x̂)
dY

dŷ
(0) = 0 ⇒ dY

dŷ
(0) = 0 (18)

X(x̂)
dY

dŷ
(1) = 0 ⇒ dY

dŷ
(1) = 0 (19)

Note that we have introduced a separation constant, −λ2. This form was chosen for reasons
explained later. The constant appears since the two sides of Equation 16 can only be equal if both
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sides are in fact constant, and are both equal to the same constant. This allows us to rewrite the
partial differential equation as two separate ordinary differential equations which are easily solved:

dX

dx̂
= −αλ2

Pe
X ⇒ X = k0e

−αλ2x̂/Pe (20)

dY

dŷ
= −λ2Y ⇒ Y = k1 sin(λŷ) + k2 cos(λŷ) (21)

The equations above and the physics of the problem effectively require that λ is a positive quantity.
If it was negative, then the exponential term in the solutions above would grow without bound.
This is physically impossible in our system since we have no sources. Since we know that λ is
positive, we can simplify subsequent operations by using −λ2 as the separation constant.

Substituting the above solutions back into Equation 15:

θ̂ = e−αλ2x̂/Pe (k1 sin(λŷ) + k2 cos(λŷ)) (22)

Note that the constants have been coalesced. This is the general solution.

3.4 Application of Boundary Conditions

To get the solution particular to our problem, we must apply the boundary conditions. First, apply
the Neumann boundary conditions (18) and (19):

dY

dŷ
= k1 cos(λŷ)− k2 sin(λŷ) (23)

0 = k1 cos(0) + k2 sin(0) ⇒ k1 = 0 (24)
0 = k2 sin(λ) ⇒ λ = πn n ∈ Z∗ (25)

Where Z∗ is the set of all nonnegative integers. Note that k2 cannot be zero since that would lead
to a trivial solution. Therefore, we instead find all λ that satisfies the boundary conditions.

Because of the superposition principle we can write a single equation for all values of n:

θ̂ =
∞∑
n=0

kne
−αn2π2x̂/Pe cos(nπŷ) (26)

θ̂ = k0 +
∞∑
n=1

kne
−αn2π2x̂/Pe cos(nπŷ) (27)

then to solve for the coefficients kn, we apply the last remaining boundary condition (17):

1 +
Da

2
ŷ2 = k0 +

∞∑
n=1

kn cos(nπŷ) (28)

This is in fact a Fourier series and kn is the Fourier coefficients.
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We use the orthogonality of cosine to remove the infinite sum and obtain an expression for kn:
ˆ 1

0

cos (nπx) cos (mπx) dx =
1

2
δnm (29)

ˆ 1

0

cos (nπx) dx = 0 (30)

Where δnm is the Kronecker delta and n ≥ 1. The expression for k0 and kn are:

k0 =

ˆ 1

0

(
1 +

Da

2
ŷ2
)

dŷ = 1 +
Da

6
(31)

kn = 2

ˆ 1

0

(
1 +

Da

2
ŷ2
)
cos(nπŷ) dŷ = Da

2

π2

(−1)n

n2
(32)

Finally, substituting (31) and (32) into (27), then substituting the result into (12), we get the
solution for the concentration:

ĉ = 1 + Da

[
1− 3ŷ2

6
− α

Pe
x̂+

2

π2

∞∑
n=1

(−1)n

n2
e−αn2π2x̂/Pe cos(nπŷ)

]
(33)

4 Numerical Solution via MATLAB

MATLAB’s built–in pdepe() function can solve partial differential equations of the form:

c

(
x, t, u,

∂u

∂x

)
∂u

∂t
= x−m ∂

∂x

(
xmf

(
x, t, u,

∂u

∂x

))
+ s

(
x, t, u,

∂u

∂x

)
Luckily, our partial differential equation can be written in this form by letting:

c = 1, m = 0, f = D
∂u

∂x
, s = 0

thus we can use pdepe() to numerically solve our problem and compare the results with our
analytical solution. A somewhat confusing change of variables is needed to fit the form pdepe()

expects:

our model’s x ⇒ pdepe()’s t
our model’s y ⇒ pdepe()’s x

This is taken into account in our MATLAB code. The code used to generate solution plots can be
found in Appendix A. Equation 7 and its associated boundary conditions were used in implement-
ing the pdepe()–based solution.
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5 Results

For the purpose of plotting the results, we have used the following parameters:

Parameter Value Description

L 5.5 cm Bioreactor length
W 2.8 cm Bioreactor width
H 0.01 cm Bioreactor height
c0 140 nmol cm−3 Inlet oxygen concentration
Q 1mL min−1 Volumetric flow rate
D 2× 10−5 cm2 s−1 Oxygen diffusivity
J 0.0646 nmol cm−2 s−1 Oxygen flux into cell monolayer

V 0.5952 cm s−1 Average flow velocity = Q/(W ×H)
α 550 Length/height ratio = L/H
Da 0.2307 Damköhler number = (J ×H)/(D × c0)
Pe 297.6190 Péclet number = (V ×H)/D

The last four parameters are calculated from the previous parameters. We used the numerical
values presented in Allen, et al for the parameters.[2] We plotted all analytical solutions using the
first 10 terms in the infinite series.

Shown below are the solutions obtained by using pdepe() and by evaluating the analytical
solution across the entire problem domain: The two solutions are in good agreement. There is,
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Figure 3: Numerical solution using the parameters presented above.

however, a bit of oscillation at the very left edge of the domain. This is a manifestation of the
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Figure 4: Analytical solution using the parameters presented above.

Gibbs phenomenon associated with the Fourier series. Increasing the number of terms reduces the
severity of the oscillations, but will always persist as we cannot practically evaluate the infinite
series.

We varied some of the parameters to see the effect it produces on the solution. The param-
eters we changed were the initial inlet concentration c0, the oxygen consumption rate J , and the
volumetric flow rate Q.
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Figure 5: Analytical solution with c0 = 90mmHg.
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Figure 6: Analytical solution with doubled oxygen consumption rate.
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Figure 7: Analytical solution with doubled flow rate.

6 Discussion

As can be seen from Figures 3 and 4, a concentration gradient is achieved at the cell monolayer with
contours that extend upwards to the top of the bioreactor. We can see that there are distinct regions
of O2 concentration at the standard flow rate and that it cannot be assumed that with a constant
O2 inlet concentration that all cells would be exposed to the same O2 concentration. However, as
can be seen from Figure 7, when the flow rate is doubled, the apparent O2 concentration to the
cells becomes more and more similar across the bottom of the bioreactor. This would lead to the
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conclusion that there is an optimal flow rate (provided that it doesn’t generate too much physical
stress on the cells and inherently cause phenotypic changes) that would result in a minimal gradient
from one end of the bioreactor to the other. We also noticed that halving the inlet concentration
yielded the predicted results of having a lower O2 concentration across the entire bioreactor and if
the cells were to consume O2 at a doubled rate, the gradient becomes sharper and more apparent.
This would mean that the flow would need to be adjusted to compensate for the doubled rate to
ensure a more even O2 distribution in the bioreactor.

To create a more robust model, a velocity profile can be derived from the Navier–Stokes equa-
tions instead of using average fluid velocity as was seen in the model presented above. Also, the
above model assumes constant cellular O2 consumption which is not necessarily the case in living
organisms and would be better modeled with the help of Michaelis–Menten kinetics. Another case
that can be considered is the fact that the cells might not be a perfect monolayer or the bioreactor is
used to culture a thicker tissue slice. Modeling could be performed to check the O2 concentration
at each layer in the tissue. Finally, this model benefits from the assumption that convection is much
greater that diffusion (i.e. the Péclet number is much greater than 1). Although this should gener-
ally be the case, a more robust model that allows for analysis of the scenario where this assumption
doesnt hold true may be of use.
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Appendix A: MATLAB Code 
 
The following MATLAB code was used to generate the solution plots: [Begin code— 
 
function bioreactor_pde() 
    % Bioreactor parameters 
    L = 5.5;     % bioreactor length, cm 
    W = 2.8;     % bioreactor width, cm 
    H = 0.01;    % bioreactor height, cm 
    c_0 = 140;   % inlet oxygen concentration, nmol/cm^3 
    Q = 1/60;    % inlet volumetric flow rate, cm^3/s 
    D = 2e-5;    % oxygen diffusivity, cm^2/s 
    J = 0.0646;  % oxygen flux due to cells, nmol/(cm^2s) 
     
    % Computed from above parameters 
    V = Q/(W*H); % mean fluid velocity, cm/s 
    alpha = L/H; % length-to-height ratio, unitless 
    Pe = V*H/D;  % Peclet number, unitless 
    Da = (J*H)/(D*c_0); % Damkohler number, unitless 
  
    % Solve using MATLAB's pdepe solver. 
    % Note: The documentation for pdepe expresses the PDE 
    % in terms of x and t. To match the form of our PDE to 
    % what pdepe expects, we assume our x = pdepe's t and 
    % our y = pdepe's x. We transpose pdepe's solution afterwards to fix 
    % this. 
    x = linspace(0, L, 100); 
    y = linspace(0, H, 100); 
    u1 = pdepe(0,... 
        @(~, ~, ~, DuDx) pde_problem(DuDx, V, D),... 
        @(~) pde_bc_x(c_0),... 
        @(~, ~, ~, ~, ~) pde_bc_y(J),... 
        y, x); 
    u1 = u1(:,:,1)'; 
  
    % Compare with the analytic solution. 
    [xg, yg] = meshgrid(x./L, y./H); 
    u2 = pde_solution(xg, yg, alpha, Pe, Da); 
    % The solution is dimensionless. 
    u2 = u2.*c_0; 
  
    % Plot contour plots of the two solutions. 
    figure(1); 
    contourf(x, y, u1); 
    set(gca, 'FontName', 'Times New Roman', 'FontSize', 12); 
    set(gca, 'YDir', 'reverse'); 
    caxis([0 140]); 
    c = colorbar(); 
    set(c, 'FontName', 'Times New Roman', 'FontSize', 12); 
    title('concentration / (nmol/cm^3) [pdepe]'); 
    xlabel('x / cm'); 
    ylabel('y / cm'); 
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    figure(2); 
    contourf(x, y, u2); 
    set(gca, 'FontName', 'Times New Roman', 'FontSize', 12); 
    set(gca, 'YDir', 'reverse'); 
    caxis([0 140]); 
    c = colorbar(); 
    set(c, 'FontName', 'Times New Roman', 'FontSize', 12); 
    title('concentration / (nmol/cm^3) [analytic]'); 
    xlabel('x / cm'); 
    ylabel('y / cm'); 
end 
  
function [c, f, s] = pde_problem(dudy, V, D) 
    c = V; 
    f = D*dudy; 
    s = 0; 
end 
  
function u = pde_bc_x(c_0) 
    u = c_0; 
end 
  
function [pl, ql, pr, qr] = pde_bc_y(J) 
    pl = 0; 
    ql = 1; 
    pr = J; 
    qr = 1; 
end 
  
function c = pde_solution(x, y, alpha, Pe, Da)  
    sum = 0; 
    % We can't actually evaluate an infinite sum, but the series 
    % converges very quickly due to the exponential term. Thus, 
    % we don't need to sum over many terms. 
    for n = 1:10 
        sum = sum + ((-1)^n/n^2.*exp(-alpha*n^2*pi^2/Pe.*x)... 
            .*cos(n*pi.*y)); 
    end 
    c = 1 + Da.*((1-3.*y.^2)./6-alpha/Pe.*x+2/pi^2.*sum); 
end 
 
—End code] 
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